52 research outputs found

    Quantum Algorithm Implementations for Beginners

    Full text link
    As quantum computers become available to the general public, the need has arisen to train a cohort of quantum programmers, many of whom have been developing classical computer programs for most of their careers. While currently available quantum computers have less than 100 qubits, quantum computing hardware is widely expected to grow in terms of qubit count, quality, and connectivity. This review aims to explain the principles of quantum programming, which are quite different from classical programming, with straightforward algebra that makes understanding of the underlying fascinating quantum mechanical principles optional. We give an introduction to quantum computing algorithms and their implementation on real quantum hardware. We survey 20 different quantum algorithms, attempting to describe each in a succinct and self-contained fashion. We show how these algorithms can be implemented on IBM's quantum computer, and in each case, we discuss the results of the implementation with respect to differences between the simulator and the actual hardware runs. This article introduces computer scientists, physicists, and engineers to quantum algorithms and provides a blueprint for their implementations

    n Ondersoek na die optimale struktuur vir die beraming van oorerflikheid

    No full text
    Proefskrif (M. Sc. Agric.) -- Universiteit van Stellenbosch, 1967.Full text to be digitised and attached to bibliographic record

    Degradation of Proteins and Starch by Combined Immobilization of Protease, α-Amylase and β-Galactosidase on a Single Electrospun Nanofibrous Membrane

    Get PDF
    Two commercially available enzymes, Dextrozyme (α-amylase) and Esperase (protease), were covalently immobilized on non-woven electrospun poly(styrene-co-maleic anhydride) nanofiber mats with partial retention of their catalytic activity. Immobilization was achieved for the enzymes on their own as well as in different combinations with an additional enzyme, β-galactosidase, on the same non-woven nanofiber mat. This experiment yielded a universal method for immobilizing different combinations of enzymes with nanofibrous mats containing maleic anhydride (MAnh) residues in the polymer backbone

    Expression of human P450C17 as an export protein in saccharomyces cerevisiae

    No full text
    Cytochrome P450c17 (P450c17), together with cytochrome P450c21 (P450c21), plays an important role in progesterone metabolism in the mammalian adrenal cortex. Low levels of expression and the presence of other steroidogenic enzymes in adrenal cortex endoplasmic reticulum (ER) impedes purification and characterisation of wild type as well as mutant forms of the hemoprotein. Heterologous gene expression systems have previously been used successfully to express active P450c17. Heterologous expression can also be used for the preparation of anti-P450c17-IgG. For antibody production larger amounts of pure P450c17 peptide, rather than the active protein, is, however, desirable. If the expressed protein can be affinity tagged and secreted into the medium, isolation and purification will be facilitated. Saccharomyces cerevisiae, YPH259, was transformed with a modified YCplac111 yeast expression-secretion vector (pPRL2). The gene coding for a truncated human P450c17 (signal anchor sequence 1-18 was removed) was inserted, in reading frame, downstream from the leader sequence MF?. A histidine tag was incorporated at the C- terminus. The modified yeast expression vector was expressed in yeast, the secreted P450c17-peptide purified by affinity chromatography and identified by immunoblot analysis.7 page(s
    • …
    corecore